Literal free goddamn energy from the sky and these greedy fucks are going to burn the world down because they can’t flip it for a buck
It sounds dumb, but because you can’t turn off solar power, if it produces more then you need, you have to use it somehow or it can damage equipment. Hence the driving prices into negative territory. It’s a technical problem more than it is a financial one.
It is a financial problem. Technically you can just cover the solar panels. But that’s not good financially.
Your “technically you can” is actually a huge logistical nightmare to implement.
Having electricity rates go really low is intended to incentivize people or companies to sink the excess energy to wherever they can. And also to discourage producers to produce more at that hour, if they are able to.
Logistical problems are still financial problems though. That’s my point. Hire enough people/develop the appropriate automation and the issue is no more.
We have the technology to solve this, the problem is the money.
In fact, you could just buy enough batteries and the problem will also go away. Still a financial problem, not a technology one.
EDIT: just to clarify, if at some point energy prices go negative, it means that it is cheaper to buy energy usage than a solution. Unless the energy company is dumb enough to just lose money for the lazyness of considering other options.
You could spend the money, but you also need to consider whether that money is well spent. Batteries do not last forever. Maybe that money is better spent on R&D to develop better batteries first. Also natural resources and environmental impact needs to be considered. Batteries take natural resources to build and also occupies a lot of space.
20 years ago, we also have the technology to run AI workloads. Except we probably had to deploy billions of CPUs to match the capability of today’s GPUs. We have the technology then, but it is not practical. And that money was much better spent in the R&D that lead to today’s GPUs. So similarly our batteries probably needs to be a few magnitude better than what we have today before it is practical to use.
Really? I’m seriously asking, because I thought solar farms already had automated ways of cleaning off the panels, surely an automated way to cover the panels wouldn’t be any more complex than that. It would add maintenance costs for sure, but calling it a logistical nightmare seems like an exaggeration.
Most use a horizontal single axis configuration and could just tilt the panels away from the sun.
The real question that we should be asking, is why nobody can think of what to do with free energy?
Desalination? Mine Bitcoin? Giant space laser?
It’s not a question of ideas, it’s a question of money. Building things to use excess power costs a lot of money.
In some markets, the power price actually goes negative and consumers can be paid to use energy.
https://edition.cnn.com/2024/09/20/energy/three-mile-island-microsoft-ai/index.html
I think there’s plenty of money out there to use excess power, someone just has to connect the dots…
Or in a pinch: just run big-ass space heaters. Seriously. It’s a stupid way to burn off excess power, but it’s dirt simple and cheap. Just have a big array of resistive heaters out in an empty field somewhere with a high fence around it. Need to burn off an extra GW? Run it through massive heating elements and burn burn it off. It’s a stupid waste of good energy, but as an emergency backup, it’s not a bad option. It’s trivially easy to dispose of huge amounts of excess electricity if you just run the mother-of-all space heaters. Run your stupid giant resistive heater at the bottom of a lake for even better effect.
You need to consider more than just solar farms. There are many roof top solar systems on people’s houses. That’s what I’m referring to regarding logistical nightmare.
Second, if we are just going to cover up solar panels, then it really defeats the purpose of having it. A better way is to come up with ways to store this excess energy to use when there is low production and not have to depend on fossil fuels at night.
Yeah I understand storing and using the energy is obviously a better solution than to stop producing the energy. But in the short term, in the context of large solar arrays, until we have storage solutions or ways to use* the excess, covering the panels up or turning them to face the ground for a bit doesn’t seem like a very big logisticical hurdle.
There are many roof top solar systems on people’s houses. That’s what I’m referring to regarding logistical nightmare.
Are there really enough residential rooftop panels for this to even be a problem? And couldn’t it be solved just by installing a battery for your home to store the excess? Again, if you could explain how this would be a logistical nightmare for my ignorant self, I’d appreciate it.
Factorio players: hold my beer
“Damaging equipment” is just nonsense. I’ve got an off-grid solar system. When the battery is fully charged the solar panels simply stops producing. It has potential (voltage) but no current until you draw power. Just like a battery is full of energy but it just sits there until you draw power from it.
All solar systems could have smart switches to intelligently disconnect from the grid as needed, some inverter already do this automatically. So it’s not a technical problem. It’s a political problem.
This can cause degradation of the PN junction on the panel shortening life. The plans I’ve seen all have a resistive heater some place to dump the excess when full. Smart equipment does help mitigate most issues like moving the resistance point on the panel for lower efficiency when signaled to do so but less is not the same as none.
Didnt Nikola Tesla try to sell Westinghouse on providing free unmetered electricity to everyone on earth and got laughed out of the room?
you know we could just put our collective foot down and take the power away from them.
This is idiotic. The fact is your electricity transmission system operator has to pay a lot of money to keep the grid stable at 50 or 60Hz or your electronics would fry. With wind and especially with solar power, the variable output is always pushing the frequency one way or the other, and that creates a great need for costly balancing services. Negative pricing is an example of such a balancing service. Sounds good, but for how long do you think your electricity company can keep on paying you to consume power?
People also don’t realize that too much power is just as bad as too little, worse in fact. There’s always useful power sinks: pumped hydro, batteries, thermal storage, but these are not infinite.
Stupid question but can we not like, make toggleable solar panels? Like if I Just pull the plug extracting power from a solar panel does it explode or break or something?
Not really. You can discharge into the ground, but for large installations even the ground has a limited (local) capacity.
Edit: explain yourselves, downvoting cowards
Could they not just break the circuit for the panel, and stop it feeding back into the mains?
Yeah. My understanding is that most large solar complexes don’t have this capability, at least not in any efficient automatic way, but most home solar systems do.
I have no idea what i am talking about… But what would happen if you pulled a black tarp over the panel? Could even be automatic like the blends on a building. And even partial.
That’s extremely expensive and not really scaleable.
- Unplug solar panel array
- Less electricity being generated
- …
- Profit (for the power company)
My understanding is that most large solar arrays don’t have this capability in any sort of automatic way, and at these levels of power it’s a bit more complicated than “just unplug it”.
This seems like a massive oversight on behalf of the park designers.
One of many issues caused by the assumption that solar would only ever be a minor part of the grid.
You’re answering the wrong questions. I don’t think people are assuming that it’s simple to manage the power grid (if so, they shouldn’t be…) but rather why are we locked into a system that lets business profit motive be responsible for the continued existence of the ecosystem.
pay a lot of money to keep the grid stable at 50 or 60Hz or your electronics would fry
Absolutely not. Please don’t make things up.
This whole thread has way too many people who see the price as some kind of made up number that dictates how people behave, rather than recognizing that the price is a signal about the availability of useful real-world resources.
Even if the prices were strictly mandated by a centrally planned tariff that kept the same price throughout the day, every day, we’d still have the engineering challenge of how to match the energy fed into the grid versus taken out of the grid.
The prices are just a reflection of that technical issue, so solving it still needs to be done.
Amazing! Every word of what you just said is wrong.
You’ll need to be more specific.
To start the frequency of the electricity isn’t the issue. Second all modern electronics use switching power supplies which don’t care about frequency. That’s two incorrect things just in the second sentence that they literally said was fact.
I’m pretty sure that “your electronics” in this context is most likely referring to the grid operator’s electronics, not individual personal devices. In that case, frequency is extremely important- if you like grid stability and dislike blackouts, that is. 😅
That’s a ridiculous way to define “your electronics”. The original commenter was trying to fear monger with incorrect information, and you are jumping to protect them. I didn’t realise the grid owners had astroturfers in the fediverse.
…are you okay? You seem primed and ready to correct and attack people. Chill out, man.
I’m primed to correct FUD. If that means I’m not OK so be it. Love the textbook ad hominem by the way. That’s a classic that never goes out of style.
deleted by creator
Sounds like Communism to me. That system killed 100 gorillion people.
This is a real problem for renewables.
You don’t get paid when the sun shines, and you don’t get paid for when it does not.
You had to pay for building the solar panels and maintaining them. Corporate greed aside none sane would like their tax money either to be spent on producing electricity when it’s not needed.
Next step for renewables must be storage that is cheap enough for it to beat having fossil fuel on standby.
You don’t get paid when the sun shines
You get paid when people on your grid demand the electricity your plant produces. That’s true whether the electricity comes from the sun or fossilized trees.
Corporate greed aside none sane would like their tax money either to be spent on producing electricity when it’s not needed.
A/C usage peaks during the day and wanes at night. Laborers in virtually every field tend to work during daylight hours and sleep at night. We use more electricity when the sun is shining.
Even before you get into battery power, we have ample opportunity to grow solar inputs into the grid before we get to the point where its being wasted. At peak capacity, we’re using far more electricity than current renewables provide.
Batteries are a late stage solution to a marginal problem.
Corporate greed aside none sane would like their tax money either to be spent on producing electricity when it’s not needed.
You need to set the corporate greed aside in your own mind, too (not saying you’re greedy, saying you’ve been indoctrinated to only see life in capitalist terms). Stop thinking in “cost” or “profit”, start thinking in “benefit” and “use”. Producing electricity when it isn’t needed is only a problem when someone is looking to make money off of it.
Changing the words does not change the meaning.
Producing electricity when it isn’t being used is problematic for the grid. So is producing too little.
Producing electricity when it isn’t needed is only a problem when someone is looking to make money off of it.
I never said it should be. There are plenty of ways to regulate electricity production, storage, and even usage, they just aren’t considered “profitable” so are dismissed, overlooked, and or deliberately smeared and destroyed because they threaten those whose profits they would hurt.
Yes, but we already have many solutions ti store energy. Let’s spend the fossil fuel industry subsidies on scaling these storage method instead.
Storage needs both supply and demand. Demand is easy. However storage would be even less likely without an excess of solar supply to feed it
To be honest, at grid scale, I don’t see why the answer to this today isn’t that the government/energy companies just build a shit load of gravity batteries and use the basically free power times to build grid supply for when the sun’s gone down.
Paying billions for mega projects to save millions on cheap electricity makes no sense.
Napkin math gravity battery Last figures I found are from 2022 the costs storing 1GW 24 hours is $150 per installed kWh
My apartment has an estimated electricity consumption annually of 2000kWh, I’ll need to store half that for $150 per kWh in a structure that lasts 100 years without maintenance, then crumbles into dust and needs to be rebuilt. It would average out to $1500 per year.
My current electricity bill is about $600 per year.
I think your calculations are way off based on what I’ve just checked.
Firstly the average UK house (which is on average a fair bit smaller than American houses, for example), which typically doesn’t use AC and electric heating/cooking uses 2,700kWh (and around 10,000kWh of gas). I imagine that most other countries that don’t typically use gas and have AC, have a significantly higher average.
Secondly I’m seeing several sources saying <$0.20/kWh is what pumped hydro battery storage costs, which is roughly 2/3 of the price of grid electricity in my country.
Finally, we spend billions on power plants—why not power storage too? It’s necessary infrastructure spending whichever way you go about it.
I don’t live in the US either.
I think the actual value on my bill is 2300kwh. But we can use 2700.
I can’t find any source for $0.2/kWh. I used https://www.energy.gov/eere/analysis/2022-grid-energy-storage-technology-cost-and-performance-assessment and eyeballed the cheapest gravitational storage. PSH is still above $50. Well let’s assume $0.2 per kWh per year and that half of it can be stored it’s $270 per year in storage fee
My actual price for electricity is much lower than €600 per year, most of it is taxes and fees that does not get benefit from storage. Looking up the invoice from March i paid $0.07 per kWh, September was $0.01. Half of 2700 would be $95 using March price for the entire year.
We are spending billions, we must spend billions, but we have to spend them where it makes sense. Spending 270 to save 95 is insanity.
Wow your electricity prices are insanely cheap to me! I knew it was a bit more expensive here, but not by over 3x or even 30x based on your September estimate! We also have standing charges that amount to something like £250 a year even if you use no electricity whatsoever. My electricity & gas bill is over double yours for two people in a 2 bed house and we basically never use the heating. I think the economy of it makes sense with my situation but it definitely doesn’t for you
If you don’t mind me asking, where is it you live? Does your country have a lot of oil reserves or something?
North Scandinavia.
Most of the electricity here is hydroelectric that has been built many years ago so the power plants are paid off.
The price during summer is very low. In the winter especially the cold months is much higher with Dec-Feb being the peak.
The determining factor is still the capex for storing it. At $50 it makes no sense. At $0.2 it makes sense in some places. I don’t know which assumption is correct, I expect to be wrong in 50% of the cases when I argue on the internet.
2000kwh a YEAR? Do you live in 70° weather year around and have all gas utilities or what?
No. It’s district heating and not included on the electricity bill. I live north of the Arctic circle and a house from the same year with a heat pump would use an order of magnitude more.
The example was meant to highlight the absurd costs despite ludicrously favorable assumptions.
Interesting. For reference, I use more than that most months, but I live in Texas and it is very very hot.
My apartment has an estimated electricity consumption annually of 2000kWh, I’ll need to store half that
Your electricity usage isn’t equally distributed. You use more power during the day - primarily for cooling your house - than you do at night.
We also get a glut of wind power in the mornings and evenings, during big swings in temperature. Plenty of opportunity to harness cheap energy at the moment it is available.
And even after that, battery prices have been falling for years. Current EV batteries are $133/kWh with expectations of $100/kWh by next year and under $80/kWh by 2030.
That’s before we get into the benefits of High Voltage DC transmissions, which can move large volumes of electricity across regions with minimal loss. Peak production on one coast can offset higher than expected usage on another.
Current EV batteries are
And just like that you’ve shown that gravity batteries aren’t feasible.
Storage is going to be a big part of the solution going forward. But it’s going to be chemical batteries and thermal batteries, not gravity batteries.
Give it a few years and I’ve got my hopes up for batteries.
The calculations showed the absurdity in gravity storage today, not batteries in the future.
Gravity just isn’t a good store of energy relative to chemical and nuclear alternatives.
It’s a simple method for storing energy but not an efficient method. That’s why the human body uses ATP instead of a bunch of pebbles that get lifted to our heads and dropped to our perineum.
But hey, we’ll always have Dams. And tidal generators are gaining momentum. They’re basically gravity batteries.
Because “gravity batteries” is a stupid inefficient concept peddled by techbros to solve a huge problem with “a magic solution”. In reality, they require either digging straight down like a mine shaft, but at huge scale, or a high rise building with all the weight concentrated on its top floor when the batteries are “charged”. Wind would sway that shit left and right, the weight concentration would undermine / damage the building if it even was possible to build at scale.
Well, you can use dams.
The problem is really down to finding places where you can actually build something like a hydroelectric power plant.
You need a large area you can safely flood. (No villages in the area or only villages you can buy out the owners of) or a high up lake.
The area to flood needs to have the geology required to construct a dam safely.
And finally, the area needs to be pretty high up and have an area below you can direct the outgoing water to.
Yeah, but there are already built hydroeletric dams that can be reused like that.
so-called “gravity batteries” is pretty much exactly a dam with a mini-dam/reservoir at the bottom. When there is an excess, you run the motor to reverse the waterflow to pump uphill into a highe-elevation water retention pond/mini-dam.
This also helps reduce the amount of outflow water “lost” due to high-demand. Since you could take almost a day to fill the bottom reservoir and spend “wind”/solar to pump back the “lost” water downstream back into the higher-level reservoir.
Even if things are inefficient wind/solar are “renewable”, so you can keep “wasting” excess to replenish the dam and still make enough money back ( think in-terms of drought, flooding, windy, sunny, cloudy, etc ) you can basically keep the high-output “system” always topped-up with water. And still supply water + electricity as it is needed. There is no “downside”.
Not everyone agrees. So opinions can differ.
With the situation in Ukraine, we really should spend on home scale storage for the resiliency against any disaster, even though it’s not as cost efficient
it’s long past time we took businessman out of control and replaced them with scientists.
In which case they would choose Nuclear over Solar 9/10 times. I’m onboard
They would probably use nuclear for base load, until something better is found. But it won’t “replace” solar.
With AI we will need loads of base load
I’m on board with whatever the scientists conclude. I’m not a scientist, so if they say nuclear, I’m behind nuclear. If they say solar, I’m behind solar. If they say wind, I’m behind wind. Trust scientists. If you’re trained in science, definitely verify - there’s some bad science out there for sure. But if you have no expertise in the area, just trust the scientific community.
No they wouldnt
Source: my ass
Source: worked with scientists for years. Theres a certain irony here when you made your claim without sources. Also you are very rude
That’s not what they were saying, they were saying that it’s not economical to have an abundance of electricity when people need it the least, and little or no electricity when people need it the most. It would be one thing if utilities could sell solar electricity at peak demand hours for a higher price, to make up the difference, but that’s just when solar generation is slowly down significantly or stopped entirely.
And, yes, I know that battery storage could theoretically solve this, but battery technology is not currently capable of providing electricity for the entirety of the time we need it. New technologies are being developed right now with the goal of achieving long term grid storage, but they are still in the R&D phase. I’m confident a suitable storage technology, or multiple technologies, will eventually come to market, but it’s going to take a while.
Regardless, it is likely we will always need some kind of on-demand power generation to supplement renewables and maintain grid stability, and I think nuclear is the best option.
But we shouldn’t act like the problem is that utilities are just greedy. Many utilities aren’t even for-profit companies, as many are either not-for-profit cooperatives or public entities. Sure, there are also many for-profit power utilities as well, maybe even some with connections to the fossil fuel industry, but generally power utilities are not some great villain.
For the longest time I thought people who had solar panels had a battery on their property somewhere, they’re panels would charge battery and they would only switch to the grid if their battery ran out.
I don’t know much about it, but this seems like a pretty viable solution and I still can’t believe this isn’t how it works.
Yeah you can do that. Not everyone does
I really like your response. Right behind you about energy storage.
Whoever cracks that nut is an instant billionaire in my opinion. The first cheap, effective, and practical storage technology is going to change the world. But we’re not there just yet.
I’m curious on your statement about nuclear. While I do think nuclear is a great energy source, I’m not sure I agree on the on-demand part.
Our current nuclear plants take hours or even days to start up and wouldn’t provide enough reactivity for a highly renewable grid. Are you referring to a future Small Modular Reactor technology? One with a significantly faster startup and ramp rate?
“For years, mankind has yearned to destroy the Sun.” - CM Burns.
Ya know what, I’m gonna solar even harder
puts on sunglasses 😎
Before commenting, you should know there are 2 types of solar panels:
- the ones owned by people (which may or may not feed into the grid)
- the ones owned by corporations
The article is probably about the 2nd kind (if you can only sell energy when there is a surplus, your company will fail), while the twitter user makes it seem like the 1st kind was meant. We probably need to built more of both types. Identify what type the other commenters are talking about before getting in any arguments here.
You have also made a good argument for socialized energy production. Any time you run into these situations where the optimal solution for a good society requires and is anti-profit, that’s a good place for socialized ownership.
It would be nice if anyone linked the actual article instead of just guessing based off of a screenshot.
Edit: This is the actual Twitter thread… and this is the article referenced. They’re saying that since solar plants all generally generate electricity at the same time, high enough solar adoption would mean prices would been driven down during those hours, which lowers the appeal of creating new solar panels over time. Which has implications for clean energy goals.
The real special bit is that this crap isn’t coming from, say Harvard, who one expects is all about business, but MIT which is supposed to be about Science and Engineering.
The media arm of MIT has been steaming garbage for years and constantly misrepresents the studies from their own researchers for clickbait.
But that aside, even though the engineering work out of MIT is solid, their economic opinions heavily reflect the fact that it’s an institution full of trust fund nepotism.
That’s not at all what MIT is talking about here. This goes into detail around the challenges tied in rolling out grid scale solar in a way that aligns with supply and demand curves, and how to make sure we’re able to capture overproduction so that we can use it when not enough is being produced. It’s a complex shift to work out in our over 100+ year grid production structure, and has been an ongoing discussion across the energy sector. But you know…memes and shit.
You’re not saying anything contradictory to the criticism, You’re saying the exact same shit with a more expensive vocabulary. I’m also very educated. I also agree the sun is Monty Burns greatest enemy for giving out free light.
Clearly not. The point is that grid scale deployment is not easy. It’s an important discussion to do it right. The criticism is genuinely stupid and just spotlights people who clearly don’t understand how any of this stuff works or what the article is even talking about. You can’t just slap solar panels everywhere and call it a day.
Grid scale redundancies are important. Managing load is important. Energy storage is important. Scaling up renewables and scaling down conventional generation is important. Ensuring those who cannot afford their own BTM generation can access affordable electricity is important. That’s entirely what this conversation is about.
Yeah yeah down with capitalism rah rah but if the electric company makes no money, how do they afford infrastructure maintenance?
Ok so we nationalize the electric company. Now taxes pay to keep up the electric grid?
I’m down for all of that, by the way. It’s a great solution. But there is absolutely, indisputably, 100% a problem here, and it’s childish to pretend that if evil corporations would stop being so greedy everything would magically fix itself. It’s completely valid to discuss this issue in terms of problems and solutions.
There’s absolutely a problem with how MIT Tech Review has phrased it. It could’ve been phrase like “modern power generation requires innovate solutions to the gride and large scale grid upgrades.” But no they blamed it has a Solar problem, not a grid problem.
I see headlines all the time such as “The US highways need a 1 Trillion investment in the next decade”. How come they aren’t phrased like “The problem with trucks and cars is that they destroy roads, leading to Trillions of cost to the taxpayer”. They’ve decided that transportation is non-negotiable and it’s needed. But renewable electricity is not?
That’s a fair point.
Does the price I pay for electricity not already include the cost to maintain the infrastructure needed to deliver it?
Funny enough, no. Although that’s changing in some places, with electric bills being split into a base fee for everyone hooked up and a variable fee based on usage. Obviously, this pisses off home solar users because they expected to pay nothing.
But most places use the same old model that charges you solely based on usage and was not designed with consumers also being producers.
Home solar aside, significant upgrades to the grid will require higher prices. Introducing large grid-scale solar is a significant upgrade.
Guys. Mitochondria is the powerhouse of the cell. Every cell has its own power house where it stores up the molecules needed to generate ATP on the spot. Our body does this because that’s very stable! Society should do it too. It’s called batteries.
Based and red-pilled. (Don’t yell at me back in my day the red pill entered the matrix, instead of just meaning racism.)
I don’t understand it well enough to explain it but I think that this actually is not the issue here. Something about it making the grids unstable?
Though based on their phrasing it 100% sounds like “lol how can be greedy if free”