If all of mankind’s energy was supplied through solar panels would the effect be big enough to decrease the temperature (since light is converted in part to electricity)?
Directly, as you phrased the question: No.
Indirectly: Yes. Because we would automatically stop burning fuels when we get all our energy from solar. That would decrease the temerature a tiny little bit.
But the temerature of the planet does not really depend on such actions. For example, the indirect effects of CO2 and Ozone in the atmosphere have much more powerful impacts - and still they can only change the temperature at the planet’s surface (that’s what our lives depend on). The whole of the planet is yet another thing.
Don’t forget industrial heat. If we had infinite electricity for free everywhere there would still be fossil fuels burned for industrial heat. We need more technology to finish it like plasma torches.
No need to despair, the technology is being actively developed and a lot of the sub 600 Celsius temps have an electric solution now.
Industrial electric arc furnace temperatures can reach 1,800 °C (3,300 °F)
Don’t forget industrial heat
Why? Is it different from “all of mankind’s energy”?
I assumed you meant electricity since solar only makes that type of energy efficiently (and sub 100C)
Conservation of energy equation says otherwise.
The nuance here is that the user probably means cooling the earth’s atmosphere, not the earth as a whole enclosed system.
Elaborate?
The sum of consumed energy will stay the same, so will be the heat generated by consumption. The only way to efectively decrease temperature is to reduce consumption. http://www.zo.utexas.edu/courses/THOC/Global-Warming.htm
Assuming 25% efficiency, 25% of the sunlight will be converted into electricity. However, once that energy gets used later, most of it will be converted into heat, one way or another. The main way that it will decrease heat being released into the atmosphere is by replacing less efficient methods of energy generation.
For example, it you normally heat a house with a 90% efficient gas burner to generate 900W of heat on average, you are burning enough gas to generate 1000W of heat on average throughout the day. Lets also say the house gets 4000W of heat across its roof on average throughout the day. Thats 5000W of heat being released into the atmosphere total.
Lets now say you convert to solar panels and now get 25% of that energy from the sun converted to electricity, then into heat in the house. Electric heating is essentially 100% efficient, so you get 3000W of sunlight converted directly to heat in the panels, 1000W of electricity which is also turned into heat in the house = 3900W of heat + 100W of extra electricity (turned into heat elsewhere). The 1000W of gas gets eliminated completely.
It probably wont be anywhere near the numbers listed here and batteries will play a huge role in averaging out these numbers due to varying generation and use throughout the day. Additionally this doesnt account for things like cars and othergas based systems which wont / cant be replaced economically, other technologies like radiative cooling paint, and the fact that global temperatures will likely continue to rise due to the continued release of co2 and other gases. It might slightly slow things down though
Converting electricity generation to renewable alone isnt enough to reverse global warming, it would also require converting systens which use gas and other fossil fuels to electric
Start reflecting sunlight back into space and increase the earth’s albedo
but solar panels are black, does that mean it’ll just make the earth hotter overall?
They appear black because they do not rreflect light but rather than absorb photons as heat they absorb them as electricity. This conversion means they do not get hot like a painted black surface does. In fact, solar panels are heat sensitive and become inefficient if too hot, so some have cooling on the back side or even water cooling.
Wyt urth 4evuh or some nonsense I’m not a scientician
Yes, if the panels were in outer orbit, and mostly powering things outside our planet.
A little simplified energy cannot be destroyed only change form, each time it changes it loses a little bit of energy to heat. Over time that means all energy will become heat.
So the only way to not heat up the earth with energy is to either make sure it doesn’t get to earth, or that we let it out.
Orbital solar cells could keep enough light from reaching earth to cool it, but releasing the energy dirtside would mostly cancel that out. So, we cover the earth orbit with panels and use them to fuel space things.
All of this requires more tech, a lot of resources and time to prepare though. And also a feasible way to store and use that energy in space. Maybe we shoot batteries at a moon base or orbital mining operation?
Nope, it only helps to not increase it further.
Yes, because if we build enough of them they’ll suck up all the heat from the sun’s rays. However, they would also suck up all the light. And because it would be so dark and cold, people would need their heating and lights on at all times, so the energy consumption actually would go up. My chiropractor calls it “The Solar Panel Paradox”.
Your Chiropractor sounds like they’re equally credentialed in thermodynamics as they are in medicine.
He cricks my neck real good so he must know a thing or two
@sighofannorance
@rayquetzalcoatl
Jokes aside, Solar Panels are something like ~15%% efficient, the rest of the light doesn’t get absorbed by the panels. Only ~48% of solar energy gets absorbed by the earth’s surface, ~23% gets absorbed by atmospheric particles, the rest just leaves. So the atmospheric temperatures wouldn’t change much.If you power Red-Yellow-Blue +ultraviolet LED grow lights for a “full spectrum” effect then you’re still using less power on the lights than the solar panels would absorb.
To reach GHG neutral emissions by 2035 would take adding AT LEAST something like 64 Terawatts of solar. So if a 1MW solar power plant takes up approximately 0.02 sq km (5 acres) then 1,280,000 sq km of solar would do it.
math note: (Somebody needs to check the math on this part because for some reason consumer panels are rated more like 183 watt / sq m which is 3.6 MW for the same size (note that 1 sq km is 1000000 sq m because of the rise in power (no pun intended)), just astronomically different than the 1 MW from the big plant…)
Good news, then! We can put the whole damn thing in 1/9th of the Saharan Desert! Or if we trusted that weird consumer number then we can put the whole thing in Montana! That leaves 99.749% of the earth’s surface open to get hit by the sun’s bullshit as nature intended alongside the 85% of the 0.251% that didn’t get absorbed by the panel.
Of course, becoming carbon neutral doesn’t offset the methane gasses emitted by the arctic as a result of current levels of warming, and producing more than 67-70 TW of electricity is pointless because we aren’t actually using that much power currently. One potential thing we could try is storing excess power underground such as with molten salt, or storing it on the moon or even as an additional satellite where the material would naturally cool over time.