• 0 Posts
  • 16 Comments
Joined 5 months ago
cake
Cake day: July 7th, 2024

help-circle
  • bunchberry@lemmy.worldtoMemes@lemmy.mlForgot the disclaimer
    link
    fedilink
    arrow-up
    5
    ·
    edit-2
    13 hours ago

    Good. That’s when Democrats should be criticized the most, because that is the only time you have the power to exercise any leverage over them. Why would you refuse to criticize them when you actually have a tiny bit of leverage and wait until you have no power at all and your criticism is completely irrelevant and will be ignored? That is just someone who wants to complain but doesn’t actually want anything to change.


  • bunchberry@lemmy.worldtoMicroblog Memes@lemmy.worldBro
    link
    fedilink
    English
    arrow-up
    1
    ·
    2 days ago

    I don’t get it. Who is claiming that if we build one more LLM we will solve AGI? Maybe I just live under a rock. Top comment here is saying people believe LLMs will “solve climate change.” Who believes that? I do not know what any of this is on about, I have never seen these people.


  • In Cuba they have a law that requires you to sell your house if you buy a new one. That also means you can’t be a landlord or else you yourself would be homeless. They also have a law that guarantees that if you don’t own your own home, you at least get public housing guaranteed, which has rent capped at 10% of income so it can never exceed that. They have the lowest homelessness rate in all of the Americas.



  • bunchberry@lemmy.worldtoLemmy Shitpost@lemmy.worldScalper economy
    link
    fedilink
    arrow-up
    18
    arrow-down
    2
    ·
    edit-2
    4 days ago

    It always impresses me how much people worship landlords, even Canada up there is having a housing crisis but nobody dares question the sanctity of landlords. You can watch both the major parties arguing for hours and nobody ever brings up landlordism once. A lot of them choose to instead become hostile to immigrants, both parties moving further right on immigration because stopping immigration or potentially even kicking out immigrants to them is more acceptable than questioning the sanctity of landlords. You also saw a similar thing here in the USA, I remember after the Trump/Kamala debate when they revealed the plans for bringing housing prices down and Trump was “mass deportation” and Kamala was “a tax credit.” Not sure about every country definitely here in US and Canada, people here treat landlords like unquestionable deities, the idea that their right to rule should even be called into question is not even something that passes through most people’s heads.


  • If something has observable properties, then it is part of nature, as we could observe it, model it, and include it into our scientific theories. If something has no observable properties, then it is not distinguishable from something that does not exist. Supernatural phenomena thus, tautologically, are not distinguishable from something that does not exist. Indeed, I would go as far as even saying the definition of nonexistence is to lack observable properties. That is why i se supernatural phenomena as a no-go. It either lacks observable properties, so it does not exist as a matter of definition, or it has observable properties, meaning it is just natural and not supernatural.


  • It is ultimately a philosophical choice not demanded by the mathematics to actually interpret reality as oscillating waves. Erwin Schrodinger for example argued against the notion that particles really “spread out” as waves and instead argued that the particle just kind of hops from interaction to interaction without having meaningful existence in between interaction. If you go this route, then the wave function doesn’t “describe” anything, but rather predicts where particles would hop to during an interaction.

    The reason Schrodinger argued in favor of this is because he said treating particles as actually spreading out as waves contradicts with the fact we only measure particles, so you need an additional postulate that says these waves suddenly collapse back into particles the moment you try to measure them, and he did not see why “measurement” should play a fundamental role in the theory. This is sometimes called the “measurement problem” and Heisenberg’s formulation and interpretation does not have this problem.

    If you mean, can you get rid of the wave function entirely, the answer is also yes. When quantum mechanics was first formulated, it was formulated using Heisenberg’s matrix mechanics, which make all the same predictions but does not use the wave function. The wave function is a result of a particular mathematical formalism. There is another formulation of quantum mechanics called the path integral formulation, and yet another called the ensemble in state space formulation.

    The probability of finding an electron or any other particle at one point or another can be imagined as a diffuse cloud, denser where the probability of seeing the particle is stronger. Sometimes it is useful to visualize this cloud as if it were a real thing. For instance, the cloud that represents an electron around its nucleus indicates where it is more likely that the electron appears if we look at it. Perhaps you encountered them at school: these are the atomic ‘orbitals’.

    This cloud is described by a mathematical object called wave function.The Austrian physicist Erwin Schrödinger has written an equation describing its evolution in time. Quantum mechanics is often mistakenly identified with this equation. Schrödinger had hopes that the ‘wave’ could be used to explain the oddities of quantum theory: from those of the sea to electromagnetic ones, waves are something we understand well. Even today, some physicists try to understand quantum mechanics by thinking that reality is the Schrödinger wave.

    But Heisenberg and Dirac understood at once that this would not do. To view Schrödinger’s wave as something real is to give it too much weight – it doesn’t help us to understand the theory; on the contrary, it leads to greater confusion. Except for special cases, the Schrödinger wave is not in physical space, and this divests it of all its intuitive character. But the main reason why Schrödinger’s wave is a bad image of reality is the fact that, when a particle collides with something else, it is always at a point: it is never spread out in space like a wave. If we conceive an electron as a wave, we get in trouble explaining how this wave instantly concentrates to a point at each collision.

    Schrödinger’s wave is not a useful representation of reality: it is an aid to calculation which permits us to predict with some degree of precision where the electron will reappear. The reality of the electron is not a wave: it is how it manifests itself in interactions, like the man who appeared in the pools of lamplight while the young Heisenberg wandered pensively in the Copenhagen night.

    — Carlo Rovelli, “Reality is Not what it Seems”

    Of course, you might say that this is still not “macroscopically similar to ours” because in our classical world we do not need to treat objects as if they only exist in the moment of interaction. There is always a tradeoff in quantum mechanics. It’s not a classical theory. There will always be some differences, so it really depends upon what differences you find the most intuitive/acceptable. If you find the oscillating wave picture to be too bizarre then you can think of them just as particles, with the tradeoff that they only exist relative to what they are interacting with in the moment.




  • This is a rather reductive view of quantum cryptography.

    Correct = reductive?

    The two most common applications of it I hear about is the development of encryption algorithms resistant to being broken on quantum computers

    First, I was talking about quantum encryption, not quantum cryptography, which is a bit more broad. Second, we already have cryptographic algorithms that run on classical computers that are not crackable by quantum computers, known as lattice-based cryptography which are way more practical than anything quantum cryptography could offer.

    the way, say, Shur’s algorithm is known to break RSA

    Shor’s algorithm. Yes, it breaks asymmetrical ciphers like RSA, but we have developed alternatives already it cannot break, like Kyber.

    and techniques like quantum key distribution

    Classical key exchange algorithms prevent someone from reading your key if they intercept the data packets between you. QKD is entirely impractical because it does not achieve this. Rather than preventing someone from reading your key if they intercept the data packets, it merely allows you to detect if someone is intercepting the data packets. You see, in regular cryptography, you want people to be able to intercept your data. It’s necessary for something like the internet to work, because packets of data have to be passed around the whole world, and it would suck if your packets got lost simply because someone read them in transit, which is why QKD is awful. If a single person reads the data packet in transit then they would effectively deny service to the recipient.

    Both of these are real problems that don’t become meaningless just because one-time pads exist - you need to somehow securely distribute the keys for one-time-pad encryption.

    One-time pad encryption is awful as I already explained, it would cut the entire internet bandwidth in half because if you wanted to transmit 10 gigabytes of data you would also need to transmit 10 gigabyte key. QKD is also awful for the fact that it would be unscalable to an “internet” because of how easy it is to deny service. It also doesn’t even guarantee you can detect someone snooping your packets because it is susceptible to a man-in-the-middle attack. Sure, the Diffie-Hellman Key Exchange is also susceptible to a man-in-the-middle attack, but we solve this using public key infrastructure. You cannot have public key infrastructure for quantum cryptography.

    The only proposed quantum digital signature algorithms are unscalable because they rely on Holevo’s theorem, which basically says there is a limited amount of information about the quantum state of a qubit you can gather from a single measurement, thus creating a sort of one-way function that can be used for digital signatures. The issue with this is that Holevo’s theorem also says you can acquire more information if you have more copies of the same qubit, i.e. it means every time you distribute a copy of the public key, you increase the probability someone could guess it. Public keys would have to be consumable which would entirely prevent you from scaling it to any significantly large network.

    That’s why one-time pads aren’t used everywhere, (“it would cut the whole internet bandwidth in half overnight” would not have been a sufficient reason - that’d be a tiny price to pay for unbreakable encryption, if it actually worked).

    You are living in fairy tale lala land. Come back down to reality. If you offer someone an algorithm that is impossible to break in a trillion, trillion years, and another algorithm that is in principle impossible to break, but the former algorithm is twice as efficient, then every company on the entirety of planet earth will choose the former. No enterprise on earth is going to double their expenses for something entirely imaginary that could never be observed in practice. You are really stuck in delulu town if you unironically think the reason one-time pads aren’t used practically is due to lack of secure key distribution.

    Even prior to the discovery of Shor’s algorithm, we were issuing DHKE which, at the time, was believed to be pretty much an unbreakable way to share keys. Yet, even in this time before people knew DHKE could be potentially broken by quantum computers, nobody used DHKE to exchange keys for one-time pads. DHKE is always used to exchange keys for symmetrical ciphers like AES. AES256 is not breakable by quantum computers in practice as even a quantum computer would require trillions of years to break it. There is zero reason to use a one-time pad when something like AES exists. It’s the industry standard for a reason and I bet you my entire life savings we are not going to abandon it for one-time pads ever.


  • In my view the “weirdness” of quantum mechanics is just people arbitrarily anthropomorphizing relativity for no reason. By “relativity” I do not mean specifically Einstein’s relativity, but relativity in general, any theory which requires you specifying a reference frame in order to describe other systems.

    What the material sciences have shown us is that reality is very relative. You cannot describe anything without specifying a reference frame, a coordinate system. If we had a universe with only two objects, you could never actually describe such a universe as genuinely containing two objects, because you have to pick one of those objects as the reference frame, and then from that frame of reference you could only describe another object. So you would have a universe that could be described in two different ways, but both ways would only contain one object, just a different one. To actually include two objects in your picture, you would need at least three, to pick a “third-person” reference frame to describe the other two.

    Most people have trouble grappling with this. They think in a very Newtonian way and think there should be an absolute, almost cosmic perspective, that is entirely independent of perspective. But that’s just not how reality works. All our scientific models require you to first begin with some sort of chosen reference frame in which the rest of reality will be described from.

    If two objects interact, as I said before, you can only include two objects in the picture from the reference frame of a third object. If you want to deal with those objects in themselves, you have to pick one of them as the reference frame to describe the other, and at that point you will only be working with a description of one object. Since you no longer have two, you don’t have an “interaction” any more. Rather, we might say that from that context, the other system’s properties are “realized.”

    For example, you might say the reason I “see” is because light interacts with my eyeballs. Yet, I do not see my own eyeball, from my own perspective it is not actually in the picture. The only thing in the picture is the light, i.e. what I am seeing, and I just describe what I see as is, as it has been realized in front of me. To say something is “interacting” you ultimately need three systems, but the simplest unit in which we can describe reality is with two systems, but doing so requires you adopting the reference frame of one of those two systems, and thus your description will no longer be of systems interacting but the realization of the properties of just one of those systems.

    The issue, however, is people love to anthropomorphize relativity. They insist that this relative nature of the theory is what they call “observer-dependence” assigning it to some property of conscious observers. Sometimes it is also referred to as “subjectivity,” or even the “first-person point of view,” all implying it has some relevance to humans or conscious beings themselves. Quantum mechanics is a theory that only makes predictions as to the properties of systems that will be realized under a particular frame of reference, i.e. in a particular context. But people’s obsession with anthropomorphizing relativity causes them to instead say quantum mechanics is an observer-dependent theory that only predicts what properties of systems will be observed.

    They then think it somehow is in contradiction with philosophical realism because of this supposed “observer-dependence,” but they entirely made up the observer-dependence. Quantum mechanics is a contextual theory. There is context-dependence but no “observer-dependence,” no subject-dependence, no fundamental role for measuring devices, or anything like that. If you just accept quantum mechanics is a contextual theory from the get-go, then you never actually have to introduce cats that are simulateously alive and dead, “spooky action at a distance,” some fundamental role for conscious observers or a measuring device, a multiverse, or any of that. It’s really not even that “weird” if you can get over the mental hurdle of trying to think of it in a Newtonian way and just embrace the contextual nature of the theory.

    The physicist Francois-Igor Pris has a lot of good books on this topic but sadly very little in English. I’ve asked him if he plans to ever translate any to English and he told me he does have plans, but it’s not happened yet to my knowledge.

    You see this in the article, for example:

    If you were to only teach someone the classical laws of physics that we thought governed the universe as recently as the end of the 19th century, they would be utterly astounded by the implications of quantum mechanics. There is no such thing as a “true reality” that’s independent of the observer

    This gives idealist vibes, as if quantum mechanics is not describing “true reality” but something inherent to the conscious observer. But it is describing reality, just not independent of context, because reality is contextual. The fact that there is no non-contextual reality, a reality you can describe without specifying a frame of reference, does not mean there is no reality. There is a reality, it is just one that is contextual in nature.

    I am also a bit confused as to the section of the article “Entanglement can be measured, but superpositions cannot.” What really makes quantum mechanics distinctly different from a classical probability theory is interference effects. You can observe interference effects even with a single particle (which is a consequence of “superposition”). You can also observe interference effects with multiple particles that are statistically correlated with each other, that’s what we call “entanglement.” What things like Bell’s theorem shows is just interference effects as exhibited by two statistically correlated particles.

    All we observe are the interference effects, which are both equally in the single particle and double particle case a consequence of the same thing, that being the fact that systems can exist in probabilistic states that are described by complex numbers. In classical probability theory, the numbers can only be between 0% and 100%, and so they can only accumulate. In quantum probability theory, they can be negative and even imaginary, which allows them to cancel each other out, giving rise to destructive interference.

    This simple fact is what both gives rise to interference effects observed in the single particle case, as well as the case of two or more particles. There is not something special to entanglement that we can observe that we can’t observe in the single particle case. What we always observe is just the consequence of the way probabilities work in quantum mechanics, and thus ultimately just observe statistical effects that defy basic intuition because quantum probabilities don’t work the same as classical, which we are used to.

    The distinction the author is making just doesn’t make much sense.

    But whereas superposition is different effects or particles or quantum states all superimposed atop one another, entanglement is different: it’s a correlation between two or more different parts of the same system

    Yes, but it’s just that, a correlation. Statistical correlations are part of classical probability theory. On their own, they are not interesting at all. What makes them interesting in quantum mechanics is interference effects. If you ignore the interference effects then nothing is particularly interesting about entanglement, it’s just a boring statistical correlation. If you include interference effects and ignore the correlation aspect, then what you’re left with that distinguishes it from classical probability theory is interference effects, which is also the same as the single particle case. They are both equally a consequence of “superposition” which is just that we predict the systems probabilistically using complex numbers.

    Also, the statement “Schrodinger’s cat can be alive and dead at once” is only true if for some reason you choose to interpret something not yet being determined and thus can only be predicted probabilistically as actually physically existing as a probability distribution, as if the cat is stretched out halfway dead and halfway alive. Schrodinger actually put forward this thought experiment to mock this perspective as an appeal to absurdity, not to encourage people to think this way. It is simpler to just treat it as if it’s not yet been determined in that context, and so you have to predict it probabilistically, and that probability distribution is just that, a probability distribution. It is predicting the outcome for when it is realized. It is not describing anything.




  • Quantum encryption won’t ever be a “thing.”

    All cryptography requires a pool of random numbers as inputs, and while different cryptographic methods are more secure than others, all of them are only as secure as their random number pool. The most secure cipher possible is known as a one-time pad which can be proven to be as secure as a cryptographic algorithm could possibly be, and so the only thing that could possibly lead to it being hacked is a poor random number pool. Since quantum mechanics can be used to generate truly random numbers, you could have a perfect random number pool, combined with a perfect cipher, gives you perfect encryption.

    That sounds awesome right? Well… no. Because it is trivially easy these days to get regular old classical computers to spit out basically an indefinite number of pseudorandom numbers that are indistinguishable from truly random numbers. Why do you think modern operating systems allow you to encrypt your whole drive? You can have a file tens of gigabytes bit and you click it and it opens instantly, despite your whole drive being encrypted, because your CPU can generate tens of gigabytes of random numbers good enough for cryptography faster than you can even blink.

    Random number generation is already largely a solved problem for classical computers. I own a quantum random number generator. I can compare it in various test suites such as the one released by NIST to test the quality of a random number generator, and it can’t tell the different between that and my CPU’s internal random number generator. Yes, the CPU. Most modern CPUs both have the ability to collect entropy data from thermal noise to seed a pseudorandom number generator, as well as having a hardware-level pseudorandom number, such as x86’s RDSEED and RDRAND instructions, so they can generate random numbers good enough for cryptography at blazing speeds.

    The point is that in practice you will never actually notice, even if you were a whole team of PhD statisticians and mathematicians, the difference between a message encrypted by a quantum computer and a message encrypted by a classical computer using an industry-approved library. Yet, it is not just that they’re equal, quantum encryption would be far worse. We don’t use one-time pads in practice despite their security because they require keys as long as the message itself, and thus if we adopted them, it would cut the whole internet bandwidth in half overnight. Pseudorandom number generators are superior to use as the basis for cryptography because the key can be very small and then it can spit out the rest of what is needed to encrypt/decrypt the message from it, and deterministic encryption/decryption algorithms like AES and ChaCha20 are not crackable even by a quantum computer.


  • It depends upon what you use ChatGPT for and if you know how to use it productively. For example if I ask ChatGPT coding questions it is often very helpful. If I ask it history questions it constantly makes things up. You also again need to know how to use it, like people who claim ChatGPT is not helpful for coding you ask them how they use it and they basically just ask ChatGPT to do their whole project for them and when it fails they claim it is useless. But that’s not the productive way to use it, the productive way to use it is like a replacement for StackOverflow or to provide you examples of how to use some library, or things like that, not doing your whole project for you. Of course, people often use it incorrectly so it’s probably not a good idea to allow its use in the workplace, but for individual use it can be very helpful.


  • Quantum mechanics explains a range of phenomena that cannot be understood using the intuitions formed by everyday experience. Recall the Schrödinger’s cat thought experiment, in which a cat exists in a superposition of states, both dead and alive. In our daily lives there seems to be no such uncertainty—a cat is either dead or alive. But the equations of quantum mechanics tell us that at any moment the world is composed of many such coexisting states, a tension that has long troubled physicists.

    No, this is a specific philosophical interpretation of quantum mechanics. It requires treating the wave function as a literal autonomous entity that actually describes the object. This is a philosophical choice and is not demanded by the theory itself.

    The idea that two fundamental scientific mysteries—the origin of consciousness and the collapse of what is called the wave function in quantum mechanics—are related, triggered enormous excitement.

    The “origin of consciousness” is not a “scientific mystery.” Indeed, how the brain works is a scientific mystery, but “consciousness” is just something philosophers cooked up that apparently everything we perceive is an illusion (called “consciousness”) created by the mammalian brain that is opposed to some “true reality” that is entirely invisible and beyond the veil of this illusion and has no possibility of ever being observed.

    People like David Chalmers rightfully pointed out that if you believe this, then it seems like a mystery as to how this invisible “true reality” can “give rise to” the reality we actually experience and are immersed in every day. But these philosophers have simply failed to provide a compelling argument as to why the reality we perceive is an illusion created by the brain in the first place.

    Chalmers doesn’t even bother to justify it, he just cites Thomas Nagel who says that experience is “conscious” and “subjective” because true reality is absolute (point-of-view independent) and the reality we experience is relative (point-of-view dependent), and therefore it cannot be objective reality as it exists but must be a product of the mammalian brain. Yet, if the modern sciences has shown us anything, it is that reality is absolutely not absolute but is relative to its core.

    Penrose’s argument is even more bizarre, he claims that because we can believe things that cannot be mathematically proven, our brains can do things which are not computable, and thus there must be some relationship between the brain and the outcome of measurements in quantum mechanics in which no computation can predict them beforehand. Yet, it is just a bizarre argument. Humans can believe things that can’t be proven because humans only operate on confidence levels. If you see enough examples to be reasonably confident the next will follow the same pattern, you can believe it. This is just called induction and nothing is preventing you from putting it into a computer.

    According to Penrose, when this system collapses into either 0 or 1, a flicker of conscious experience is created, described by a single classical bit.

    Penrose, like most philosophers never convincingly justifies that experience is “conscious”.

    However, per Penrose’s proposal, qubits participating in an entangled state share a conscious experience. When one of them assumes a definite state, we could use this to establish a communication channel capable of transmitting information faster than the speed of light, a violation of special relativity.

    Here he completely goes off the rails and proposes something that goes against the scientific consensus for no clear reason. Why does his “theory” even need faster-than-light communication? How does proposing superluminal signaling help explain “consciousness”? All it does is make the theory trivially false since it cannot reproduce the predictions of experiments.

    In our view, the entanglement of hundreds of qubits, if not thousands or more, is essential to adequately describe the phenomenal richness of any one subjective experience: the colors, motions, textures, smells, sounds, bodily sensations, emotions, thoughts, shards of memories and so on that constitute the feeling of life itself.

    Now the author themselves is claiming experience is “subjective” yet does not justify it, like all sophists on this topic, they just always begin from the premise that we do not perceive reality as it is but some subjective illusion and rarely try to even justify it. That aside, they are also abusing terminology. Colors, motions, textures, smells, etc, these are not experiences but abstract categories. We can talk about the experience of the color red, but we can also talk about the experience of a rainbow, or an amusement park. Are amusement parks “subjective experiences”? No, it’s an abstract category.

    Abstract categories are normative constructs used to identify something within an experience, but are they not experiences themselves. You have an experience, and then you interpret that experience to be something. This process of interpretation and identification is not the same as the experience itself. Reality just is what it is. It is not blue or red, it is not a rainbow or an amusement park, it just is. These are socially constructed labels we apply to it.

    Sophists love to demarcate the objects of “qualia,” like red or green or whatever, as somehow “special” over any other category of objects, such as trees, rocks, rainbows, amusement parks, atoms, Higgs bosons, etc. Yet, they can never tell you why. They just insist they are special… somehow. All abstract categories are socially constructed norms used to identify aspects of reality. They are all shared concepts precisely because they are socially constructed: we are all taught to identify them in the same way. We are all shown something red and told “this is red.” Two people may be physically different and thus this “red” has different impacts on them, no matter how different it is, they both learn to associate their real experience with the same word, and thus it becomes shared.

    This is true for everything. Red, dogs, trees, cats, atoms, etc. There is no demarcation between them.

    In an article published in the open-access journal Entropy, we and our colleagues turned the Penrose hypothesis on its head, suggesting that an experience is created whenever a system goes into a quantum superposition rather than when it collapses. According to our proposal, any system entering a state with one or more entangled superimposed qubits will experience a moment of consciousness.

    This is what passes for “science” these days. Metaphysical realism has really poisoned people’s minds.

    The definitiveness of any conscious experience naturally arises within the many-worlds interpretation of quantum mechanics.

    Another piece of sophistry that originates from some physicists simply disliking the Born rule, declaring it mathematically ugly, so they try to invent some underlying story from which it can be derived that would be more mathematically beautiful. However, this underlying story is not derived from anything we can observe, so there is no possible way to agree upon what it even is. There are dozens of proposals and no way to choose between them. There simply is not “the” many-worlds interpretation. There is many many-worlds interpretations.

    To make these esoteric ideas concrete, we propose three experiments that would increasingly shape our thinking on these matters.

    All the experiments proposed deal with observing the behavior of living organisms, which is irrelevant to the topic at hand.